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Abstract. We present quantitative models for the selection pressure of
cellular evolutionary algorithms structured in two dimensional regular
lattices. We derive models based on probabilistic difference equations for
synchronous and several asynchronous cell update policies. Theoretical
results are in agreement with experimental values and show that the
selection intensity can be controlled by using different update methods.

1 Introduction

Cellular evolutionary algorithms (cEAs) use populations that are structured ac-
cording to a lattice topology. The structure may be an arbitrary graph, but more
commonly it is a one-dimensional or two-dimensional grid. This kind of evolutio-
nary algorithm has become popular because it is easy to implement on parallel
hardware. However, what really matters is the model, not its implementation.
Thus, in this work we will focus on cEA models and on their properties without
worrying about implementation issues.

Several results have appeared on selection pressure and convergence speed in
cEAs. Sarma and De Jong performed empirical analyses of the dynamical beha-
vior of cellular genetic algorithms (cGAs) [8,9], focusing on the effect that the
local selection method, the neighborhood size, and neighborhood shape have on
the global induced selection pressure. Rudolph and Sprave [7] have shown how
cGAs can be modeled by a probabilistic automata network and have provided
proofs of complete convergence to a global optimum based on Markov chain ana-
lysis for a model including a fitness threshold. Recently, Giacobini et al. [2] have
successfully modeled the selection pressure curves in cEAs on one-dimensional
ring structures, and a preliminary study of two-dimensional, torus-shaped grids
has appeared in [1].

Our purpose here is to investigate in detail selection pressure in two-dimensio-
nal population structures for two kinds of dynamical systems: synchronous and
asynchronous. For that purpose, we model the experimentally observed takeover-
time curves with simple difference equations describing the propagation of the
best individual under probabilistic conditions.
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The paper proceeds as follows. In section 2 we briefly describe synchronous
and asynchronous cEAs. Section 3 introduces the concept of takeover time. In
sections 4 and 5 we describe our mathematical models for synchronous and
asynchronous updates. Theoretical predictions are compared with experimental
results in section 6, and section 7 gives our conclusions.

2 Synchronous and Asynchronous cEAs

We consider cEAs defined on a square lattice of finite size n×n. Let us call S the
(finite) set of states that a cell (individual) can take up: this is the set of points
in the (discrete) search space of the problem. The set Ni is the set of neighbors
of a given cell i, and let |Ni| = N be its size. The local transition function φ(·)
can then be defined as:

φ : SN → S

which maps the state si ∈ S of a given cell i into another state from S, as a
function of the states of the N cells in the neighborhood Ni. The neighborhood
we consider in this paper is the so-called von Neumann neighborhood, also called
linear5, which is constituted by a central cell and the four first neighbor cells
in the directions north, east, south, and west, and |Ni| = 5. Thus, the implicit
form of the stochastic transition function φ(·) is:

φ(·) = P{xi(t + 1) | xj(t) ∈ Ni}

where P is the conditional probability that cell xi will assume at the next time
step t + 1 a certain value from the set S, given the current (time t) values
of the states of all the cells in the neighborhood. We are thus dealing with
probabilistic automata, and the set S should be seen as a set of values of a
random variable. The probability P will be a function of the particular selection
and variation methods; that is, it will depend on the genetic operators. In this
paper we model cEAs using two particular selection methods: binary tournament
and linear ranking, but the same framework could easily be extended to other
selection strategies.

A cEA starts with the cells in a random state and proceeds by successively
updating them using evolutionary operators, until a termination condition is
met. Updating a cell in a cellular EA means selecting two parents in the indivi-
dual’s neighborhood, applying genetic operators to them, and finally replacing
the individual if an offspring has a better fitness (different replacement poli-
cies can be used). Cells can be updated synchronously or asynchronously. In
the synchronous case all the cells change their states simultaneously, while in
the asynchronous case cells are updated one at a time in some order. There
are many ways for sequentially updating the cells of a cEA. We consider four
commonly used asynchronous update methods [10]:

– In fixed line sweep (LS), the n cells are updated sequentially from left to
right and line after line starting from the upper left corner cell.
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– In fixed random sweep (FRS), the next cell to be updated is chosen with
uniform probability without replacement; this will produce a certain update
sequence (cj

1, c
k
2 , . . . , cm

n ), where cp
q means that cell number p is updated at

time q and (j, k, . . . , m) is a permutation of the n cells. The same permutation
is then used for all update cycles.

– The new random sweep method (NRS) works like FRS, except that a new
random cell permutation is used for each sweep through the array.

– In uniform choice (UC), the next cell to be updated is chosen at random with
uniform probability and with replacement. This corresponds to a binomial
distribution for the updating probability.

A time step is defined as updating n times sequentially, which corresponds to
updating all the n cells in the grid for LS, FRS and NRS, and possibly less than
n different cells in the uniform choice method, since some cells might be updated
more than once.

3 Takeover Time

The takeover time is defined as being the time it takes for a single best indivi-
dual to take over the entire population. It can be estimated experimentally by
measuring the propagation of the proportion of the best individual under the
effect of selection only, without any variation operator. Shorter takeover times
indicate a higher selection pressure, and thus a more exploitative algorithm. By
lowering the selection intensity the algorithm becomes more explorative. Theo-
retical takeover times have been derived by Deb and Goldberg [3] for panmictic
populations and for the standard selection methods. These times turn out to be
logarithmic in the population size, except in the case of proportional selection,
which is a factor of n slower, where n is the population size.

It has been empirically shown in [8] that as we move from a panmictic to a
square grid population of the same size with synchronous updating of the cells,
the selection pressure induced on the entire population is weaker.

A study on the selection pressure in the case of ring and array topologies in
one dimensional cEAs has been done by Rudolph [6]. Abstracting from specific
selection methods, he splits the selection procedure into two stages: in the first
stage an individual is chosen in the neighborhood of each individual, and then, in
the second stage, for each individual it is decided whether the previously chosen
individual will replace it in the next time step. Using only replacement methods
in which extinction of the best by chance cannot happen, i.e. non-extinctive
selection, Rudolph derives the expected takeover times for the two topologies as
a function of the population size and the probability that in the selection step
the individual with the best fitness is selected in the neighborhood. This study
has been followed by Giacobini et al. investigation of the asynchronous cases for
the ring topology [2].

In the present paper we study in detail the two-dimensional case for both
the synchronous and the asynchronous cell update mode. In the next section we
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introduce quantitative models for the growth of the best individual in the form
of difference stochastic equations.

4 Models

Let us consider the random variables Vi(t) ∈ {0, 1} indicating the presence in
cell i (1 ≤ i ≤ n) of a copy of the best individual (Vi(t) = 1) or of a worse
one (Vi(t) = 0) at time step t, where n is the the population size. The random
variable

N(t) =
n∑

i=1

Vi(t)

denotes the number of copies of the best individual in the population at time
step t. Initially Vi(1) = 1 for some individual i, and Vj(1) = 0 for all j �= i.

Following Rudolph’s definition [6], if the selection mechanism is non-
extinctive, the expectation E[T ] with T = min{t ≥ 1 : N(t) = n} is called
the takeover time of the selection method. In the case of spatially structured
populations the quantity Ei[T ], denoting the takeover time if cell i contains the
best individual at time step 1, is termed the takeover time with initial cell i.
Assuming a uniformly distributed emergence of the best individual among all
cells, the takeover time is therefore given by

E[T ] =
1
n

n∑

i=1

Ei[T ]

In the following sections we give the recurrences describing the growth of
the random variable N(t) in a cEA with torus topology for the synchronous
and the four asynchronous update policies described in Section 2. We consider
a non-extinctive selection mechanism that selects the best individual in a given
neighborhood with probability p ∈ (0, 1).

5 Torus Structure

Sarma and De Jong [8] proposed a simple quantitative model for the study of
the selection pressure curves for cEAs. They assumed that the diffusion of the
best individual in the artificial evolution of a torus-structured population would
follow a logistic curve. As suggested by Gorges-Schleuter in [4], in the artificial
evolution of locally interacting, spatially structured populations, the assumption
of a logistic growth doesn’t hold anymore, if the local neighborhood is small
enough. In fact, for a torus structure we have a quadratic growth. We complete
here her analysis which holds for deterministic unrestricted growth, extending
it to finite-size synchronously and asynchronously updated spatial populations
using probabilistic selection.

As derived in [1], for a structured population let us consider the limiting case,
which represents an upper bound on growth rate, in which the selection mecha-
nism is deterministic, and a cell always chooses its best neighbor for updating.
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In the case of a population of size n disposed on a torus grid of size
√

n × √
n

(assuming
√

n odd) and the von Neumann neighborhood structure, the number
of copies of the best individual can be described by the following recurrence:






N(0) = 1
N(t) = N(t − 1) + 4t , for 0 ≤ t ≤

√
n−1
2

N(t) = N(t − 1) + 4(
√

n − t) , for t >
√

n−1
2

This growth is described by a convex quadratic equation followed by a con-
cave one, as the two closed forms of the recurrence clearly show:

{
N(t) = 2t2 + 2t + 1 , for 0 ≤ t ≤

√
n−1
2

N(t) = −2t2 + 2(2
√

n − 1)t + 2
√

n − n , for t >
√

n−1
2

The described case of a deterministic growth of the number of copies of the
best individual is shown in figure 1 in the case of a population of 81 individuals
disposed on a 9 × 9 torus structure.

Fig. 1. Example of a deterministic growth of N(t) for a population of 81 individuals
on a 9 × 9 torus structure

Thus, a more accurate model should take into account a non-exponential
quadratic growth followed by a quadratic saturation (crowding effect).

In the following sub-sections we will present models for the synchronous and
the four asynchronous updates. To keep the models mathematically simple and
understandable, some approximations have been made. We will see that the
resulting recurrences still fit the experimental curves quite well.

In the limiting case the time t in the recurrences determines the measure
of the half diagonal of the 45 degrees rotated square (see figure 1) containing
the N(t) copies of the best individual. Since we want to model probabilistic
selection mechanisms, we can approximate the measures of the side s and the
half diagonal d of the 45 degrees rotated square in the following way:

s =
√

N(t), d =

√
N(t)√

2

5.1 Synchronous Takeover Time

Let us consider the growth of such a region with a selection mechanism of pro-
babilities p1, p2, p3, p4 and p5 of selecting the best individual when there are
respectively 1, 2, 3, 4 and 5 copies of it in the neighborhhod.
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Assuming that the region containing the copies of the best individual expands
keeping the shape of a 45 degrees rotated square, we can model the growth of
N(t) with the following recurrence:






N(0) = 1

N(t) = N(t − 1) + 4p2

√
N(t−1)√

2
, for N(t) ≤ n

2

N(t) = N(t − 1) + 4p2
√

n − N(t − 1) , for N(t) > n
2

5.2 Asynchronous Fixed Line Sweep Takeover Time

This update method, that is meaningful in a ring topology, in the case of a
toroidal topology can be criticized. In fact, there is no biological parallel for this
update mechanism. A precise model for such update would be very complicated,
since it is difficult to approximate the shape of the region containing the copies
of the best individual. We have therefore decided, to keep the model simple and
understandable, to roughly approximate the shape of the region with a square
stretched to the south-east direction, growing with probability p1 on the north-
east side, p2 on the south-east side, and p1 in the south direction.

Let us suppose that in any line the cells containing a copy of the best indi-
vidual at time step t have index r to s. In the next time step, the cell r − 1 will
contain a copy of the best individual with probability p, while the cells s + j
(with j = 1, . . . , n−s) will contain a copy of the best individual with probability
pj . The number of copies of the best individual in the considered line in the next
time step is

p +

√
n−j∑

i=1

pi

For large n we can approximate this quantity by the limit (2p − p2)/(1 − p).
Therefore, we can model the growth of N(t) with the following recurrence:






N(0) = 1
N(t) = N(t − 1) +

(
2p2−p2

2
1−p2

+ 2 2p1−p2
1

1−p1

) √
N(t − 1) , for N(t) ≤ n

2

N(t) = N(t − 1) +
(

2p2−p2
2

1−p2
+ 2 2p1−p2

1
1−p1

) √
n − N(t − 1) , for N(t) > n

2

5.3 Asynchronous Fixed and New Random Sweep Takeover Time

The behaviors of fixed random sweep and new random sweep averaged over all
possible permutations of grid individuals are equivalent. We therefore give only
one model describing the growth of the random variable N(t) for both policies.

In a time step the probability of one individual on the border of the region
being taken over by the best is p2, while an individual at distance 2 from the
region can be replaced by the best if one or two of its neighbors have already
been replaced during the sweep. One of its neighbors is replaced if
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– only one neighbor comes before in the sweep (and it has been replaced)
– two neighbors come before in the sweep but just one has been replaced

Two of its neighbors are replaced if both come before in the sweep and both
have been replaced. The average probability of an individual of being before
another in a sweep is 1/2, therefore an individual at distance 2 from the region
is replaced with probability

2
(

1
2

(
1 − 1

2

)
p2p1

)
+ 2

(
1
2

1
2
p2(1 − p2)p2

)
+

1
2

1
2
p2
2p2 = p2p1 +

1
4
(p2 − 2p1)p2

2

At distance 3 or more the same reasoning can be done, but we have decided to
model the growth up to distance 2 because, as it can been seen in figure 2, the
probability at distances ≥ 3 become very small.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) (b)

Fig. 2. Probability of an individual being replaced by a copy of the best individual (y
axis) with respect to distance (x axis) from the region formed by copies of the best for
asynchronous (a) Fixed Random Sweep and (b) Uniform Choice.

Thus, we can model the growth of N(t) with the following recurrence:






N(0) = 1
N(t) = N(t − 1) + 4

(
p2p1 + 1

4 (p2 − 2p1)p2
2
)
(
√

N(t − 1) − 1) + 4p1,
for N(t) ≤ n

2
N(t) = N(t − 1) + 4

(
p2p1 + 1

4 (p2 − 2p1)p2
2
)
(
√

n − N(t − 1) − 1) + 8p3,
for N(t) > n

2

5.4 Asynchronous Uniform Choice Takeover Time

The ways in which an individual can be replaced in a time step for this update
case are the same as for fixed and new random sweep (see above). In the present
case, the average probability of an individual coming before another in a time
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step is 1/n, therefore an individual at distance 2 from the region is replaced with
probability

1
n

p2p1 +
1
n2 (p2 − 2p1)p2

2

The probability is already very small at distance 2 (see figure 2). Thus, in our
model we only take into account individuals at distance 1 from the region.

In terms of time steps, the growth of N(t) can be modeled with the following
recurrence:






N(0) = 1
N(t) = N(t − 1) + 4p2

√
N(t − 1) , for N(t) ≤ n

2
N(t) = N(t − 1) + 4p2(

√
n − N(t − 1) − 1) + 8p3 , for N(t) > n

2

6 Empirical Results

Since cEAs are good candidates for using selection methods that are easily ex-
tensible to small local pools, we use binary tournament and linear ranking in
our experiments. Fitness-proportionate selection could also be used but it suffers
from stochastic errors in small populations, and it is more difficult to model since
it requires knowledge of the fitness distribution. The cEA structure has torus
topology of size 32 × 32 with von Neumann neighborhood. Only the selection
operator is active: for each cell it selects one individual in the cell neighborhood,
and the selected individual replaces the old individual only if it has a better
fitness.

6.1 Binary Tournament Selection

We have used the binary tournament selection mechanism described by Rudolph
[6]: two individuals are randomly chosen with replacement in the neighborhood
of a given cell, and the one with the better fitness is selected for the replacement
phase.

Figure 3 shows the growth curves of the best individual for the panmictic,
the synchronous and three asynchronous update methods. In all cases the same
set of parameters has been used. The mean curves for the two asynchronous
methods, fixed and new random sweep, show a very similar behavior, so we have
decided to plot only the new random sweep results. The graph shows that the
asynchronous update methods give an emergent selection pressure greater than
that of the synchronous case, growing from the uniform choice to the line sweep,
with the fixed random sweep in between.

The numerical values of the mean takeover times for the five update methods,
together with their standard deviations are shown in Table 1, where it can be
seen that the fixed random sweep and new random sweep methods give results
that are statistically indistinguishable.

Since we use a von Neumann neighborhood, the probabilities p1, p2 and p3
of selecting the best individual when there are respectively 1, 2 and 3 copies
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Fig. 3. Takeover times with (a) binary tournament selection, and (b) linear ranking.
Mean values over 100 runs. The vertical axis represents the number of copies N(t) of
the best individual in each population as a function of the time step t.

Table 1. Mean takeover time and standard deviation of the binary tournament selec-
tion for the five update methods. Mean values over 50 independent runs.

Synchro LS FRS NRS UC
Mean Takeover Time 44.06 21.8 27.21 28.26 35.73
Standard Deviation 1.6746 1.7581 1.5654 1.8996 2.4489

of it in the neighborhhod are respectively 9/25, 6/25 and 21/25. Using these
probabilities in the models, we calculated the theoretical growth curves. Figure 4
shows the predicted and the experimental curves for the five update methods.

6.2 Linear Ranking Selection

We have used a standard linear ranking selection mechanism. The five individuals
in the neighborhood of a considered cell are ranked according to their fitnesses:
each individual then has probability 2(s − i)/(s(s − 1)) to be selected for the
replacement phase, where s is the number of cells in the neighborhood (s = 5 in
our case) and i is its rank in the neighborhood.

Figure 3 shows the growth curves of the best individual for the panmictic,
the synchronous and three asynchronous update methods, using the same pa-
rameter set in all cases. We can observe in the linear ranking case the same
behavior that emerged in the binary tournament case: the mean curves for the
two asynchronous updates, fixed and new random sweep, show a very similar
behavior. We have therefore decided to plot only the new random sweep results.
The graph shows that the asynchronous update methods give an emergent sel-
ection pressure greater than that of synchronous one, growing from the uniform
choice to the line sweep, with the fixed renadom sweep in between. The numeri-
cal values of the mean takeover times for the five update methods, together with
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Fig. 4. Comparison of the experimental takeover time curves (full) with the model
(dashed) in the case of binary tournament selection for four update methods: synchro-
nous (a), asynchronous line sweep (b), asynchronous fixed random sweep (c), uniform
choice (d).

their standard deviations are shown in Table 2. Again, the results show that the
two random sweep methods are statistically equivalent.

Table 2. Mean takeover time and standard deviation of the linear ranking selection
for the five update methods. Mean values over 50 independent runs.

Synchro LS FRS NRS UC
Mean Takeover Time 40.68 18.2 23.96 24.89 32.16
Standard Deviation 1.2703 1.633 1.4766 1.4626 2.3856

Since we use a von Neumann neighborhood, the probabilities p1, p2 and p3
of selecting the best individual when there are respectively 1, 2 and 3 copies
of it in the neighborhhod are respectively 2/5, 7/10 and 9/10. Using these pro-
babilities in the models, we calculated the theoretical growth curves. Figure 5
shows the predicted and the experimental curves for the five update methods.
The agreement between theory and experiment is very good.
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Fig. 5. Comparison of the experimental takeover time curves (full) with the model
(dashed) in the case of linear ranking selection for four update methods: synchronous
(a), asynchronous line sweep (b), asynchronous fixed random sweep (c), uniform choice
(d).

7 Conclusions and Future Work

We have presented quantitative models describing the growth of a single best
individual in cellular evolutionary algorithms structured as a torus with von
Neumann neighborhood. New results have been obtained for synchronous and
some asynchronous cell update policies. The models are given as probabilistic
recurrence equations. We have studied two types of selection mechanisms that
are commonly used in cEAs: binary tournament and linear ranking. With these
selection methods, our results show that there is a good agreement between
theory and experiment; in particular, we confirmed that asynchronous cell up-
date methods give rise to different global selection intensity. This should allow
the control of selection pressure in an easy and principled way, without using ad
hoc parameters.

In the future, we intend to extend this type of analysis to larger neighbor-
hoods, and to more complex topologies such as general graph structures, inclu-
ding random graphs. Moreover, we intend to investigate Markov chain modeling
of our system and the relationships that may exist with probabilistic particle
systems such as voter models [5].
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the genetic and evolutionary computation conference GECCO’03, pages 955–966.
Springer Verlag, Berlin, 2003.

2. M. Giacobini, M. Tomassini, and A. Tettamanzi. Modelling selection intensity for
linear cellular evolutionary algorithms. In P. Liardet et al., editor, Proceedings of
the Sixth International Conference on Artificial Evolution, Evolution Artificielle
2003. Springer Verlag, Berlin, 2003. To appear.

3. D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in
genetic algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms,
pages 69–93. Morgan Kaufmann, 1991.

4. M. Gorges-Schleuter. An analysis of local selection in evolution strategies. In
W. Banzhaf, J. Daida, A. E. Eiben, M. Garzon, V. Honavar, M. Jakiela, and
R. Smith, editors, Genetic and evolutionary conference, GECCO99, volume 1, pa-
ges 847–854. Morgan Kaufmann, San Francisco, CA, 1999.
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